Abstract
Machine learning has experienced great success in many applications. Precipitation is a hard meteorological variable to predict, but it has a strong impact on society. Here, a machine-learning technique—a formulation of gradient-boosted trees—is applied to climate seasonal precipitation prediction over South America. The Optuna framework, based on Bayesian optimization, was employed to determine the optimal hyperparameters for the gradient-boosting scheme. A comparison between seasonal precipitation forecasting among the numerical atmospheric models used by the National Institute for Space Research (INPE, Brazil) as an operational procedure for weather/climate forecasting, gradient boosting, and deep-learning techniques is made regarding observation, with some showing better performance for the boosting scheme.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献