The Impact of Improved Topographic Resolution on the Distribution of Terrain Spectra and Grid-Size Selection for Mesoscale Models

Author:

Wang Chengxin,Liang Li,Zhang Wancheng,Gao Shouting,Yang Shuai

Abstract

Spectral analysis of terrain height variance is conducive to quantitatively study the terrain characteristics and grid-size selection for mesoscale models. Improved topographic resolutions can lead to the variations of terrain characteristics and the appropriate grid size for a fixed analyzed area. Spectral methods of one-dimensional weighted average and arithmetic mean were used to investigate the specific impact on the distribution of terrain spectra and grid-size selection for mesoscale models of the landslide-prone areas in western Sichuan. The results indicate that the maximum spectral energy (the variance of the terrain height series) of 30″ resolution (R1) is larger than that of 90 m resolution (R2), indicating a gentler undulation of terrain for R2. The spectral curve of R2 almost overlaps with that of R1 because the difference in topographic resolution does not change the dominant distribution of the topography. Their differing spectral energies at longer wavelengths are related to the majority of grid points of R2 distributed at shorter wavelength bands. A least squares fit in the form of S=aλb was used to estimate the decreasing trend of the spectral distribution. The difference in spectral slope between R1 and R2 is mainly caused by the spectral energy of R2 at shorter wavelengths. The exponent b is connected with grid-size selection for mesoscale models. A universal horizontal grid size of 2.5 km for R1 and 1.9 km for R2 are required to resolve 95% of the terrain height variance for a mesoscale model application without a subgrid-scale parameterization. The simulation tests show that the improved topographic resolution appears to perform better in reproducing precipitation, which is probably related to the finer details of the terrain recognized by the model.

Funder

the National Science Foundation for Young Scientists of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3