A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants

Author:

Mejía-Giraldo Diego,Velásquez-Gomez Gregorio,Muñoz-Galeano Nicolás,Cano-Quintero Juan,Lemos-Cano Santiago

Abstract

This paper proposes a strategy for sizing a battery energy storage system (BESS) that supports primary frequency regulation (PFR) service of solar photo-voltaic plants. The strategy is composed of an optimization model and a performance assessment algorithm. The optimization model includes not only investment costs, but also a novel penalty function depending on the state of charge (SoC). This function avoids the existence of a potential inappropriate SoCtrajectory during BESS operation that could impede the supply of PFR service. The performance assessment algorithm, fed by the optimization model sizing results, allows the emulation of BESS operation and determines either the success or failure of a particular BESS design. The quality of a BESS design is measured through number of days in which BESS failed to satisfactorily provide PFR and its associated penalization cost. Battery lifetime, battery replacements, and SoC are also key performance indexes that finally permit making better decisions in the election of the best BESS size. The inclusion of multiple BESS operational restrictions under PFR is another important advantage of this strategy since it adds a realistic characterization of BESS to the analysis. The optimization model was coded using GAMS/CPLEX, and the performance assessment algorithm was implemented in MATLAB. Results were obtained using actual frequency data obtained from the Colombian power system; and the resulting BESS sizes show that the number of BESS penalties, caused by failure to provide PFR service, can be reduced to zero at minimum investment cost.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3