Efficient Removal of Polyvalent Metal Ions (Eu(III) and Th(IV)) from Aqueous Solutions by Polyurea-Crosslinked Alginate Aerogels

Author:

Georgiou Efthalia,Pashalidis Ioannis,Raptopoulos GrigoriosORCID,Paraskevopoulou PatrinaORCID

Abstract

The removal of polyvalent metal ions Eu(III) and Th(IV) from aqueous solutions using polyurea-crosslinked calcium alginate (X-alginate) aerogels has been investigated by batch-type experiments under ambient conditions and pH 3. The material presents relatively high sorption capacity for Eu(III) (550 g kg−1) and Th(IV) (211 g kg−1). The lower sorption capacity for Th(IV) compared to Eu(III) is attributed to the net charge of the dominant species in solution under the given experimental conditions, which is Eu3+ for Eu(III), and Th(OH)22+ and Th(OH)3+ for Th(IV). Generally, the sorption is an endothermic and entropy-driven process, and it follows the Langmuir isotherm model. According to the FTIR spectra, sorption occurs via formation of inner-sphere complexes between the surface functional groups and the f-metal cationic species. The presence of europium and thorium in the adsorbent material was confirmed and quantified with EDS analysis. To the best of our knowledge, this is the first report of an aerogel material used as an adsorbent for Eu(III). Compared to other materials used for the sorption of the specific ions, which are mostly carbon-based, X-alginate aerogels show by far the highest sorption capacity. Regarding Th(IV) uptake, X-alginate aerogels show the highest capacity per volume (27.9 g L−1) among the aerogels reported in the literature. Both Eu(III) and Th(IV) could be recovered from the beads by 65% and 70%, respectively. Furthermore, Th(VI) could also be quantitatively removed from wastewater, while Eu(III) could be removed by 20%. The above, along with their stability in aqueous environments, make X-alginate aerogels attractive candidates for water treatment and metal recovery applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference41 articles.

1. Lanthanide complexation in aqueous solutions

2. Adsorption of rare earth metals: A review of recent literature

3. Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues;U.S. Environmental Protection Agency,2012

4. Sequential separation and selective extraction of uranium and thorium from monazite sulfate leach liquor using dipropylamine extractant

5. Thorium Fuel Cycle: Potential Benefits and Challenges,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3