The Effectiveness of Varroa destructor Infestation Classification Using an E-Nose Depending on the Time of Day

Author:

Szczurek Andrzej,Maciejewska Monika,Zajiczek Żaneta,Bąk Beata,Wilk Jakub,Wilde JerzyORCID,Siuda Maciej

Abstract

Honey bees are subject to a number of stressors. In recent years, there has been a worldwide decline in the population of these insects. Losses raise a serious concern, because bees have an indispensable role in the food supply of humankind. This work is focused on the method of assessment of honey bee colony infestation by Varroa destructor. The approach allows to detect several categories of infestation: “Low”, “Medium” and “High”. The method of detection consists of two components: (1) the measurements of beehive air using a gas sensor array and (2) classification, which is based on the measurement data. In this work, we indicate the sensitivity of the bee colony infestation assessment to the timing of measurement data collection. It was observed that the semiconductor gas sensor responses to the atmosphere of a defined beehive, collected during 24 h, displayed temporal variation. We demonstrated that the success rate of the bee colony infestation assessment also altered depending on the time of day when the gas sensor array measurement was done. Moreover, it was found that different times of day were the most favorable to detect the particular infestation category. This result could indicate that the representation of the disease in the beehive air may be confounded during the day, due to some interferences. More studies are needed to explain this fact and determine the best measurement periods. The problem addressed in this work is very important for scheduling the beekeeping practices aimed at Varroa destructor infestation assessment, using the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Global pollinator declines: trends, impacts and drivers

2. Threats to an ecosystem service: pressures on pollinators

3. Honey bee colony losses;Peter;J. Apicul. Res.,2010

4. Clarity on Honey Bee Collapse?

5. Colony collapse disorder: A descriptive study;Van Engelsdorp;PLoS ONE,2009

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3