Performance of Quad Mass Gyroscope in the Angular Rate Mode

Author:

Askari SinaORCID,Asadian MohammadORCID,Shkel AndreiORCID

Abstract

In this paper, the characterization and analysis of a silicon micromachined Quad Mass Gyroscope (QMG) in the rate mode of operation are presented. We report on trade-offs between full-scale, linearity, and noise characteristics of QMGs with different Q-factors. Allan Deviation (ADEV) and Power Spectral Density (PSD) analysis methods were used to evaluate the performance results. The devices in this study were instrumented for the rate mode of operation, with the Open-Loop (OL) and Force-to-Rebalance (FRB) configurations of the sense mode. For each method of instrumentation, we presented constraints on selection of control parameters with respect to the Q-factor of the devices. For the high Q-factor device of over 2 million, and uncompensated frequency asymmetry of 60 mHz, we demonstrated bias instability of 0.095∘/hr and Angle Random Walk (ARW) of 0.0107∘/hr in the OL mode of operation and bias instability of 0.065∘/hr and ARW of 0.0058∘/hr in the FRB mode of operation. We concluded that in a realistic MEMS gyroscope with imperfections (nearly matched, but non-zero frequency asymmetry), a higher Q-factor would increase the frequency stability of the drive axis resulting in an improved noise performance, but has challenges in implementation of digital control loops.

Funder

Defense Advanced Research Projects Agency and U.S. Navy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MEMS Gyro Compassing: Is Symmetry the Key?;2023 DGON Inertial Sensors and Systems (ISS);2023-10-24

2. Atomic Layer Deposition and Sputtering of Piezoelectric Thin Films for Improved IMU Performance;2023 IEEE/ION Position, Location and Navigation Symposium (PLANS);2023-04-24

3. Design and Analysis of a MOEMS Gyroscope Based on a Ring-Shaped Hybrid Structure;Plasmonics;2023-04-18

4. Large Amplitude Linear Drive Quadruple Mass Gyroscope;2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL);2023-03-28

5. Built-In Packaging for Single Terminal Devices;Sensors;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3