Modified Firefly Optimization Algorithm-Based IDS for Nature-Inspired Cybersecurity

Author:

Shandilya Shishir Kumar1ORCID,Choi Bong Jun2ORCID,Kumar Ajit2ORCID,Upadhyay Saket1ORCID

Affiliation:

1. Vellore Institute of Technology, VIT Bhopal University, Bhopal 466114, India

2. School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea

Abstract

The new paradigm of nature-inspired cybersecurity can establish a robust defense by utilizing well-established nature-inspired computing algorithms to analyze networks and act quickly. The existing research focuses primarily on the efficient selection of features for quick and optimized detection rates using firefly and other nature-inspired optimization techniques. However, selecting the most appropriate features may be specific to the network, and a different set of features may work better than the selected one. Therefore, there is a need for a generalized pre-processing step based on the standard network monitoring parameters for the early detection of suspicious nodes before applying feature-based or any other type of monitoring. This paper proposes a modified version of the firefly optimization algorithm to effectively monitor the network by introducing a novel health function for the early detection of suspicious nodes. We implement event management schemes based on the proposed algorithm and optimize the observation priority list based on a genetic evolution algorithm for real-time events in the network. The obtained simulation results demonstrate the effectiveness of the proposed algorithm under various attack scenarios. In addition, the results indicate that the proposed method reduces approximately 60–80% of the number of suspicious nodes while increasing the turnaround time by only approximately 1–2%. The proposed method also focuses specifically on accurate network health monitoring to protect the network proactively.

Funder

MSIT Korea under the National Research Foundation (NRF) Korea

Innovative Human Resource Development for Local Intellectualization support program

Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean government

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3