Evaluation of Remote Sensing and Reanalysis Products for Global Soil Moisture Characteristics

Author:

Zhang Peng1ORCID,Yu Hongbo123,Gao Yibo4,Zhang Qiaofeng12

Affiliation:

1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China

2. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Hohhot 010022, China

3. Provincial Key Laboratory of Mongolian Plateau’s Climate System, Hohhot 010022, China

4. College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China

Abstract

Soil moisture (SM) exists at the land-atmosphere interface and serves as a key driving variable that affects global water balance and vegetation growth. Its importance in climate and earth system studies necessitates a comprehensive evaluation and comparison of mainstream global remote sensing/reanalysis SM products. In this study, we conducted a thorough verification of ten global remote sensing/reanalysis SM products: SMAP DCA, SMAP SCA-H, SMAP SCA-V, SMAP-IB, SMOS IC, SMOS L3, LPRM_C1, LPRM_C2, LPRM_X, and ERA5-Land. The verification was based on ground observation data from the International SM Network (ISMN), considering both static factors (such as climate zone, land cover type, and soil type) and dynamic factors (including SM, leaf area index, and land surface temperature). Our goal was to assess the accuracy and applicability of these products. We analyzed the spatial and temporal distribution characteristics of global SM and discussed the vegetation effect on SM products. Additionally, we examined the global high-frequency fluctuations in the SMAP L-VOD product, along with their correlation with the normalized difference vegetation index, leaf area index, and vegetation water content. Our findings revealed that product quality was higher in regions located in tropical and arid zones, closed shrubs, loose rocky soil, and gray soil with low soil moisture, low leaf area index, and high average land surface temperature. Among the evaluated products, SMAP-IB, SMAP DCA, SMAP SCA-H, SMAP SCA-V, and ERA5-Land consistently performed better, demonstrating a good ability to capture the spatial and temporal variations in SM and showing a correlation of approximately 0.60 with ISMN. SMOS IC and SMOS L3 followed in performance, while LPRM_C1, LPRM_C2, and LPRM_X exhibited relatively poor results in SM inversion. These findings serve as a valuable reference for improving satellite/reanalysis SM products and conducting global-scale SM studies.

Funder

National Natural Science Foundation of China

Inner Mongolia Natural Science Foundation Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3