Realizing Eco-Friendly Water-Resistant Sodium-Alginate-Based Films Blended with a Polyphenolic Aqueous Extract from Grape Pomace Waste for Potential Food Packaging Applications

Author:

Gubitosa Jennifer1ORCID,Rizzi Vito1ORCID,Marasciulo Cosma1,Maggi Filippo2ORCID,Caprioli Giovanni2ORCID,Mustafa Ahmed M.2ORCID,Fini Paola3ORCID,De Vietro Nicoletta4,Aresta Antonella Maria4ORCID,Cosma Pinalysa13ORCID

Affiliation:

1. Dipartimento di Chimica, Università degli Studi “Aldo Moro” di Bari, Via Orabona, 70126 Bari, Italy

2. Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Ma-donna delle Carceri 9/B, 62032 Camerino, Italy

3. Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 70126 Bari, Italy

4. Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi “Aldo Moro” di Bari, Via Orabona, 70126 Bari, Italy

Abstract

Water-resistant and environmentally friendly sodium-alginate-based films have been investigated to develop functional materials to extend the food’s shelf-life. A water-stable alginate-based film was prepared, employing both the internal and external gelation approach in the presence of CaCl2. To apply this film to food packaging and thus preserve food quality, the aim of this work is to perform a chemical and physical characterization of the proposed materials, evidencing the main features and stability under different work conditions. Water contact angle measurements showed a value of 65°, suggesting an important reduced hydrophilic character of the obtained alginate films due to the novel CaCl2-induced compacted polymer network. The film’s stability was thus checked through swelling measurements in water after varying pH, temperature, and ionic strength. The film was stable at high temperatures and not pH-responsive. Only highly concentrated salt-based solutions negatively affected the proposed packaging, causing a large swelling. Furthermore, a water-based polyphenolic extract from grape (Vitis vinifera L.) pomace waste was embedded inside the films in different amounts in order to confer additional properties. The extract’s polyphenolic content (evaluated from HPLC/MS-MS measurements) endowed the films’ UV-light screening and enhanced antioxidant properties. These important findings suggest the additional potential role of these films in protecting food from light deterioration. The stability of these hybrid films was also checked by observation, as the polyphenols’ presence did not largely alter the alginate network that occurred yet was water-resistant under the described work conditions.

Funder

Research for Innovation (REFIN) per l’individuazione dei progetti di ricerca

MUR-Fondo Promozione e Sviluppo

Dottorati di ricerca in Puglia XXXIII, XXXIV, XXXV ciclo

European Union Next-GenerationEU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3