Abstract
The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, the authors investigated bond strength degradation by conducting pull-out tests on concrete specimens, with induced crack width and stirrups ratio being the principal parameters. An expansion agent-filled pipe (EAFP) simulates cracks due to the volumetric expansion of the corroded rebar. One advantage of this method is that it allows one to focus on the single effect of an induced crack. The pull-out tests on 36 specimens show that stirrups’ confinement significantly influences the bond degradation due to induced cracks. The authors proposed an empirical model for the degradation of bond strength, considering the impact of induced crack width. The result shows that the induced crack by EAFP can quantify the exclusive consequence of corrosion on bonds. Furthermore, the coefficient of variation is 12% for specimens without stirrup from Law et al. For specimen without and with stirrup from Lin et al., the coefficients of variation are 14% and 17%. The proposed model can predict the corroded specimen from the literature with reasonable accuracy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献