Design and Analysis of XY Large Travel Micro Stage Based on Secondary Symmetric Lever Amplification

Author:

Zhang Tao1,Xiong Liuguang1,Pan Zequan1,Zhang Chunhua1,Qu Wen12,Wang Yuhang1,Yang Chunmei12

Affiliation:

1. College of Electromechanical Engineering, Northeast Forestry University, Harbin 150006, China

2. Forestry and Woodworking Machinery Engineering Technology Center, Northeast Forestry University, Harbin 150006, China

Abstract

This study presents a newly developed piezoelectric drive mechanism for the purpose of designing, analyzing, and testing a micro-positioning platform driven by piezoelectric actuators. The platform incorporates a piezoelectric ceramic actuator and a flexible hinge drive and features a symmetrical two-stage lever (STSL) amplification mechanism and a parallelogram output structure. The implementation of this design has led to notable enhancements in the dynamic properties of the platform, thereby eliminating the undesired parasitic displacement of the mechanism. An analytical model describing the fully elastic deformation of the platform is established, which is further verified by finite element simulation. Finally, the static and dynamic performances of the platform are comprehensively evaluated through experiments. A closed-loop control strategy is adopted to eliminate the nonlinear hysteresis phenomenon of the piezoceramic actuator (PEA). The experimental results show that the piezoelectric micro-actuator platform has a motion range of 97.84 μm × 98.03 μm; the output coupling displacement error is less than 1%; the resolutions of the two axes are 8.1 nm and 8 nm, respectively; and the x-axis and y-axis trajectory tracking errors are both 0.6%. The piezoelectric micromotion platform has good dynamic properties, precision, and stability. The design has a wide application potential in the field of micro-positioning.

Funder

National Key Research and Development Program of China

National Natural Science Foundation

key research and development project in Heilongjiang Province, China

Postdoctoral Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3