Formation and Microstructural Evolution of Ferritic ODS Steel Powders during Mechanical Alloying

Author:

Nowik KrzysztofORCID,Zybała RafałORCID,Oksiuta ZbigniewORCID

Abstract

Ferritic ODS steel elemental powder compositions with various Zr content (0.3–1.0 wt.%), ground in a Pulverisette 6 planetary ball mill, were extensively studied by X-ray diffraction line profile analysis, microscopic observations, microhardness testing and particle size measurements. A characteristic three-stage process of flattening the soft powders, formation of convoluted lamellae and, finally, formation of nanocrystalline grains was observed. In order to quantify the microstructural properties, expressed mainly in terms of crystallite size and dislocation density, a methodology for detailed and accurate microstructure analysis of nanosized and severely deformed materials was proposed by the Whole Powder Pattern Modelling (WPPM) approach. In the case of the proposed ODS alloy composition, the overlapping of Fe and Cr Bragg reflections makes the microstructure analysis certainly more complicated. The results showed that the microstructure of powders evolved towards the nanocrystalline state consisting of fine (diameter of ~15 nm) and narrowly dispersed domains, with extensive dislocation density exceeding 1016 m−2.

Funder

Ministry of Science and Higher Education of Poland

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3