Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes

Author:

Xing YanORCID,Chen Xiaopeng,Huang Yujia,Zhen Xiali,Wei Lujun,Zhong Xiqiang,Pan WeiORCID

Abstract

Ceramic electrolytes hold application prospects in all-solid-state lithium batteries (ASSLB). However, the ionic conductivity of ceramic electrolytes is limited by their large thickness and intrinsic resistance. To cope with this challenge, a two-dimensional (2D) vermiculite film has been successfully prepared by self-assembling expanded vermiculite nanosheets. The raw vermiculite mineral is first exfoliated to thin sheets of several atomic layers with about 1.2 nm interlayer channels by a thermal expansion and ionic exchanging treatment. Then, through vacuum filtration, the ion-exchanged expanded vermiculite (IEVMT) sheets can be assembled into thin films with a controllable thickness. Benefiting from the thin thickness and naturally lamellar framework, the as-prepared IEVMT thin film exhibits excellent ionic conductivity of 0.310 S·cm−1 at 600 °C with low excitation energy. In addition, the IEVMT thin film demonstrates good mechanical and thermal stability with a low coefficient of friction of 0.51 and a low thermal conductivity of 3.9 × 10−3 W·m−1·K−1. This reveals that reducing the thickness and utilizing the framework is effective in increasing the ionic conductivity and provides a promising stable and low-cost candidate for high-performance solid electrolytes.

Funder

National Natural Science Foundation of China

State Key Laboratory of New Ceramic and Fine Processing Tsinghua University

Key Laboratory of Science and Technology on Advanced Functional Composite Laboratory

Natural Science Foundation of Jiangsu Province

NUPTSF

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3