Integrating Multi-Source Remote Sensing to Assess Forest Aboveground Biomass in the Khingan Mountains of North-Eastern China Using Machine-Learning Algorithms

Author:

Wang XiaoyiORCID,Liu CaixiaORCID,Lv Guanting,Xu JinfengORCID,Cui GuishanORCID

Abstract

Forest aboveground biomass (AGB) is of great significance since it represents large carbon storage and may reduce global climate change. However, there are still considerable uncertainties in forest AGB estimates, especially in rugged regions, due to the lack of effective algorithms to remove the effects of topography and the lack of comprehensive comparisons of methods used for estimation. Here, we systematically compare the performance of three sources of remote sensing data used in forest AGB estimation, along with three machine-learning algorithms using extensive field measurements (N = 1058) made in the Khingan Mountains of north-eastern China in 2008. The datasets used were obtained from the LiDAR-based Geoscience Laser Altimeter System onboard the Ice, Cloud, and land Elevation satellite (ICESat/GLAS), the optical-based Moderate Resolution Imaging Spectroradiometer (MODIS), and the SAR-based Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR). We show that terrain correction is effective for this mountainous study region and that the combination of terrain-corrected GLAS and PALSAR features with Random Forest regression produces the best results at the plot scale. Including further MODIS-based features added little power for prediction. Based upon the parsimonious data source combination, we created a map of AGB circa 2008 and its uncertainty, which yields a coefficient of determination (R2) of 0.82 and a root mean squared error of 16.84 Mg ha−1 when validated with field data. Forest AGB values in our study area were within the range 79.81 ± 16.00 Mg ha−1, ~25% larger than a previous, SAR-based, analysis. Our result provides a historic benchmark for regional carbon budget estimation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3