Design and Experimental Assessment of a Vibration Control System Driven by Low Inertia Hydrostatic Magnetorheological Actuators for Heavy Equipment

Author:

Mallette Gabrielle1ORCID,Gauthier Charles-Étienne1,Hemmatian Masoud1ORCID,Denis Jeff1ORCID,Plante Jean-Sébastien1

Affiliation:

1. CREATEK, 3IT(P2), Département de Génie Mécanique, Université de Sherbrooke, 3000 Boulevard de l’Université, Sherbrooke, QC J1K 0A5, Canada

Abstract

Active suspension systems for automotive vehicles were developed in the past using hydrostatic, electric, magnetic and magnetorheological (MR) technologies to control road vibrations and vehicle dynamics and thus improve ride comfort and vehicle performance. However, no such systems were developed for heavy equipment, trucks and off-highway vehicles. For instance, agricultural tractors are still equipped with minimal suspension systems causing discomfort and health problems to drivers. The high suspension loads due to the massive weight of these vehicles are a challenge since high forces are needed to achieve efficient active suspension control. This paper presents an experimentally validated feasibility study of a hydrostatic, MR clutch-driven system of actuators. The scope of this paper is to evaluate the preliminary performance of the actuator for future vibration control. The hydraulic system allows the actuators to be remotely located from the wheels or cabin of the heavy vehicle and conveniently placed on the vehicle’s suspended frame. The design includes two MR clutches driven in an antagonistic configuration to push and pull on the end effector. Experiments on a laboratory prototype show that the low-inertia characteristics of the clutches allow a high blocked-output force bandwidth of 20 Hz with peak output forces exceeding 15 kN.

Funder

Michelin

Natural Science and Engineering Research Council of Canada

Fonds de recherche du Québec—Nature et technologies

Mitacs

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3