Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells

Author:

Cui Lixiang,Huo Haibo,Xie Genhui,Xu JingxiangORCID,Kuang Xinghong,Dong Zhaopeng

Abstract

During the actual operation of the solid oxide fuel cell (SOFC), degradation is one of the most difficult technical problems to overcome. Predicting the degradation trend and estimating the remaining useful life (RUL) can effectively diagnose the potential failure and prolong the useful life of the fuel cell. To study the degradation trend of the SOFC under constant load conditions, a SOFC degradation model based on the ohmic area specific resistance (ASR) is presented first in this paper. Based on this model, a particle filter (PF) algorithm is proposed to predict the long-term degradation trend of the SOFC. The prediction performance of the PF is compared with that of the Kalman filter, which shows that the proposed algorithm is equipped with better accuracy and superiority. Furthermore, the RUL of the SOFC is estimated by using the obtained degradation prediction data. The results show that the model-based RUL estimation method has high accuracy, while the excellence of the PF algorithm for degradation trend prediction and RUL estimation is proven.

Funder

Haibo Huo

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3