The Effect of GFRP Powder on the High and Low-Temperature Properties of Asphalt Mastic

Author:

Zhen Tao12,Zhao Pinxue3,Zhang Xing3,Si Wei34,Ling Tianqing1

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Xuefu Avenue 66, Chongqing 400074, China

2. Sichuan Expressway Construction & Development Group Co., Ltd., Chengdu 610047, China

3. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China

4. Postdoctoral Workstation, Tibet Tianlu Co., Ltd., Lhasa 850000, China

Abstract

Glass fiber reinforced polymer (GFRP) is the main composite material used in wind turbine blades. In recent years, zero-carbon energy sources such as wind power have been widely used to reduce carbon emissions, resulting in a large amount of waste GFRP, and causing serious environmental problems. To explore efficient ways to recycle waste GFRP, this study explores the impact of adding GFRP powder (nominal maximum particle size ≤ 0.075 mm) on the high and low temperature properties of asphalt mastic. Samples of GFRP asphalt mastics were prepared with filler-asphalt mass ratios of 0.01:1, 0.1:1, 0.8:1, and 1:1, as well as two control samples of limestone filler asphalt mastics with filler-asphalt mass ratios of 0.8:1 and 1:1. The study analyzed the effect of GFRP on the asphalt mastic’s performance using temperature sweep, MSCR, and BBR tests. Results showed that the presence of GFRP improved the high-temperature resistance and recovery of asphalt mastic but led to decreased low-temperature crack resistance. The results suggest that GFRP has the potential to be used as a filler in asphalt mastic, with a recommended filler-asphalt mass ratio range of less than 0.8:1 for optimal low-temperature performance. However, further research is necessary to determine the optimal content of GFRP in asphalt mastic and to study its impact on other road performance metrics.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation for Key Research Program of Tibet

Tibet Tianlu Innovation and Development Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3