Assessing Robustness of Morphological Characteristics of Arbitrary Grayscale Images

Author:

Smolyar Igor,Smolyar Daniel

Abstract

In our previous work, we introduced an empirical model (EM) of arbitrary binary images and three morphological characteristics: disorder of layer structure (DStr), disorder of layer size (DSize), and pattern complexity (PCom). The basic concept of the EM is that forms of lines play no role as a morphological factor in any narrow area of an arbitrary binary image; instead, the basic factor is the type of line connectivity, i.e., isotropic/anisotropic connections. The goal of the present work is to justify the possibility of making the EM applicable for the processing of grayscale arbitrary images. One of the possible ways to reach this goal is to assess the influence of image binarization on the robustness of DStr and DSize. Images that exhibit high and low edge gradient are used for this experimental study. The robustness of DStr and DSize against the binarization procedure is described in absolute (deviation from average) and relative (Pearson’s coefficient correlation) terms. Images with low edge gradient are converted into binary contour maps by applying the watershed algorithm, and DStr and DSize are then calculated for these maps. The robustness of DStr and DSize were assessed against the image threshold for images with high edge gradient and against the grid size of contour maps and Gaussian blur smoothing for images with low edge gradient. Experiments with grayscale arbitrary patterns, such as the surface of Earth and Mars, tidal sand ripples, turbulent flow, a melanoma, and cloud images, are presented to illustrate the spectrum of problems that may be possible to solve by applying the EM. The majority of our experiments show a high level of robustness for DStr and DSize.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3