COMMA: Propagating Complementary Multi-Level Aggregation Network for Polyp Segmentation

Author:

Shin WooseokORCID,Lee Min SeokORCID,Han Sung WonORCID

Abstract

Colonoscopy is an effective method for detecting polyps to prevent colon cancer. Existing studies have achieved satisfactory polyp detection performance by aggregating low-level boundary and high-level region information in convolutional neural networks (CNNs) for precise polyp segmentation in colonoscopy images. However, multi-level aggregation provides limited polyp segmentation owing to the distribution discrepancy that occurs when integrating different layer representations. To address this problem, previous studies have employed complementary low- and high- level representations. In contrast to existing methods, we focus on propagating complementary information such that the complementary low-level explicit boundary with abstracted high-level representations diminishes the discrepancy. This study proposes COMMA, which propagates complementary multi-level aggregation to reduce distribution discrepancies. COMMA comprises a complementary masking module (CMM) and a boundary propagation module (BPM) as a multi-decoder. The CMM masks the low-level boundary noises through the abstracted high-level representation and leverages the masked information at both levels. Similarly, the BPM incorporates the lowest- and highest-level representations to obtain explicit boundary information and propagates the boundary to the CMMs to improve polyp detection. CMMs can discriminate polyps more elaborately than prior CMMs based on boundary and complementary representations. Moreover, we propose a hybrid loss function to mitigate class imbalance and noisy annotations in polyp segmentation. To evaluate the COMMA performance, we conducted experiments on five benchmark datasets using five metrics. The results proved that the proposed network outperforms state-of-the-art methods in terms of all datasets. Specifically, COMMA improved mIoU performance by 0.043 on average for all datasets compared to the existing state-of-the-art methods.

Funder

Korea Institute for Advancement of Technology

Korea TechnoComplex Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3