Abstract
Ionic liquids (ILs) are new green solvents, which are widely used in lignocellulosic and microalgal biorefineries. However, high-temperature operating conditions limit their application in the extraction of heat-labile algal products, such as bioactive astaxanthin. In this study, we report the technical feasibility of room-temperature astaxanthin extraction from Haematococcus lacustris cysts with a thick and complex cell wall structure, by combining ultrathin α-quartz nanoplates (NPLs) with ethyl-3-methylimidazolium ([Emim])-based ILs. When four different [Emim]-based ILs with thiocyanate (SCN), diethylphosphate (DEP), HSO4, and Cl anions were applied to 90-day-old H. lacustris cysts at room temperature (~28 °C), the astaxanthin extraction efficiency was as low as 9.6–14.2%. Under sonication, α-quartz NPLs disrupted the cyst cell wall for a short duration (5 min). The astaxanthin extraction efficacies of a subsequent IL treatment improved significantly to 49.8% for [Emim] SCN, 60.0% for [Emim] DEP, 80.7% for [Emim] HSO4, and 74.3% for [Emim] Cl ions, which were 4.4, 6.1, 8.4, and 5.2 times higher than the extraction efficacy of only ILs, respectively. This finding suggests that α-quartz NPLs can serve as powerful cell-wall-disrupting agents for the room-temperature IL-mediated extraction of astaxanthin from robust algal cyst cells.
Funder
National Research Foundation of Korea
Korea Institute of Energy Research
Pusan National University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献