An ANNs-Based Method for Automated Labelling of Schematic Metro Maps

Author:

Lan TianORCID,Li Zhilin,Wang JichengORCID,Gong Chengyin,Ti Peng

Abstract

Schematic maps are popular for representing transport networks. In the last two decades, some researchers have been working toward automated generation of network layouts (i.e., the network geometry of schematic maps), while automated labelling of schematic maps is not well considered. The descriptive-statistics-based labelling method, which models the labelling space by defining various station-based line relations in advance, has been specially developed for schematic maps. However, if a certain station-based line relation is not predefined in the database, this method may not be able to infer suitable labelling positions under this relation. It is noted that artificial neural networks (ANNs) have the ability to infer unseen relations. In this study, we aim to develop an ANNs-based method for the labelling of schematic metro maps. Samples are first extracted from representative schematic metro maps, and then they are employed to train and test ANNs models. Five types of attributes (e.g., station-based line relations) are used as inputs, and two types of attributes (i.e., directions and positions of labels) are used as outputs. Experiments show that this ANNs-based method can generate effective and satisfactory labelling results in the testing cases. Such a method has potential to be extended for the labelling of other transport networks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3