Deep Learning Architectures for Diagnosis of Diabetic Retinopathy

Author:

Solano Alberto1ORCID,Dietrich Kevin N.1,Martínez-Sober Marcelino1ORCID,Barranquero-Cardeñosa Regino1,Vila-Tomás Jorge2,Hernández-Cámara Pablo2ORCID

Affiliation:

1. Intelligent Data Analysis Laboratory, ETSE (Engineering School), Universitat de València, 46100 Burjassot, Spain

2. Image Processing Lab., Universitat de València, 46980 Paterna, Spain

Abstract

For many years, convolutional neural networks dominated the field of computer vision, not least in the medical field, where problems such as image segmentation were addressed by such networks as the U-Net. The arrival of self-attention-based networks to the field of computer vision through ViTs seems to have changed the trend of using standard convolutions. Throughout this work, we apply different architectures such as U-Net, ViTs and ConvMixer, to compare their performance on a medical semantic segmentation problem. All the models have been trained from scratch on the DRIVE dataset and evaluated on their private counterparts to assess which of the models performed better in the segmentation problem. Our major contribution is showing that the best-performing model (ConvMixer) is the one that shares the approach from the ViT (processing images as patches) while maintaining the foundational blocks (convolutions) from the U-Net. This mixture does not only produce better results (DICE=0.83) than both ViTs (0.80/0.077 for UNETR/SWIN-Unet) and the U-Net (0.82) on their own but reduces considerably the number of parameters (2.97M against 104M/27M and 31M, respectively), showing that there is no need to systematically use large models for solving image problems where smaller architectures with the optimal pieces can get better results.

Funder

MICIIN/FEDER/UE

Spanish MIU

GVA

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3