Optimization of Process Variables for the Sustainable Extraction of Phenolic Compounds from Chicory and Fennel By-Products

Author:

Baiano Antonietta1ORCID,Romaniello Roberto1ORCID,Giametta Ferruccio2ORCID,Fiore Anna1ORCID

Affiliation:

1. Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), Università di Foggia, Via Napoli 25, 71122 Foggia, Italy

2. Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy

Abstract

The production of minimally processed vegetables generates large amounts of by-products whose concentrations in bioactive compounds is comparable to those of the edible part. The aim of this work was the optimization of sustainable processes for the extraction of phenolic compounds from chicory and fennel by-products using water as solvent. The results were compared with those obtained through a conventional extraction performed with a 70% ethanol aqueous solution as extraction solvent. The ultrasound-assisted extraction (UAE) and microwave-assisted extractions (MAE) were established by developing two Box–Behnken designs, respectively, a four-factor, three-level design and a three-factor, three-level design. A quadratic polynomial model was useful in optimizing both the ultrasonic (R2 0.8473 for chicory and R2 0.9208 for fennel) and microwave (R2 0.9145 for chicory and R2 0.7836 for fennel) extraction of bioactive compounds as well as the antioxidant activity of extract (R2 0.8638 for chicory and R2 0.9238 for fennel treated with ultrasounds; R2 0.9796 for chicory and R2 0.7486 for fennel submitted to MAE). The UAE conditions able to maximize the total phenolic concentrations were: 10 g/100 mL, 55 °C, t: 60 min, 72 W for chicory (9.07 mg gallic acid/g dm) and 15 g/100 mL, 45 °C, t: 40 min, 120 W for fennel (6.64 mg gallic acid/g dm). Concerning MAE, the highest phenolic concentrations were obtained applying 7.5 g/100 mL; 2 min; 350 W for chicory (8.23 mg gallic acid/g dm); 7.5 g/100 mL; 3 min; 160 W for fennel (6.73 mg gallic acid/g dm). Compared to conventional solvent extraction, UAE and MAE allowed the obtainment of (a) chicory extracts richer in phenolic compounds (+48% and +34%, respectively), in less time (4-fold and 90-fold reduction, respectively) and (b) fennel, extracts with slightly lower amount of phenolics (−11.7% and −10.5%, respectively) but halving the extraction time (UAE) or reducing it to 60-fold (MAE).

Funder

Italian Minister of University and Scientific Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3