Matching the Liquid Atomization Model to Experimental Data Obtained from Selected Nozzles

Author:

Cieniawska Beata1ORCID,Parafiniuk Stanisław2ORCID,Kluza Paweł A.3ORCID,Otachel Zdzisław3

Affiliation:

1. Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37a Józefa Chełmońskiego Street, 51-630 Wrocław, Poland

2. Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, 20-612 Lublin, Poland

3. Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, 20-612 Lublin, Poland

Abstract

The spraying procedure is one of the most difficult operations in agricultural production. Achieving the desired effectiveness of the procedure is dependent on obtaining an appropriate level and uniformity of liquid distribution. The aim of this paper was to present a liquid decomposition model generated on the basis of experimental data. The tests were carried out on a test stand, which consisted of a container with nozzles and a grooved table. The experiments were carried out with the use of selected standard, anti-drift, and air-induction single-stream nozzles at constant liquid pressure. The optimization process was carried out in Microsoft Excel Solver. Furthermore, in order to compare the data generated by the model with the data from the virtual boom, we applied an analysis of correlation and linear regression in the Statistica 13.1 software. Based on the results obtained, it can be concluded that the model is a good fit to the experimental data (R2 > 0.95). The model, which was generated on the basis of experimental data, will facilitate control of the operation and degree of wear of nozzles, which will contribute to ensuring uniform spraying.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3