Battery-Less Environment Sensor Using Thermoelectric Energy Harvesting from Soil-Ambient Air Temperature Differences

Author:

Pappinisseri Puluckul PriyeshORCID,Weyn MaartenORCID

Abstract

Energy harvesting is an effective technique for prolonging the lifetime of Internet of Things devices and Wireless Sensor Networks. In applications such as environmental sensing, which demands a deploy-and-forget architecture, energy harvesting is an unavoidable technology. Thermal energy is one of the most widely used sources for energy harvesting. A thermal energy harvester can convert a thermal gradient into electrical energy. Thus, the temperature difference between the soil and air could act as a vital source of energy for an environmental sensing device. In this paper, we present a proof-of-concept design of an environmental sensing node that harvests energy from soil temperature and uses the DASH7 communication protocol for connectivity. We evaluate the soil temperature and air temperature based on the data collected from two locations: one in Belgium and the other in Iceland. Using these datasets, we calculate the amount of energy that is producible from both of these sites. We further design power management and monitoring circuit and use a supercapacitor as the energy storage element, hence making it battery-less. Finally, we deploy the proof-of-concept prototype in the field and evaluate its performance. We demonstrate that the system can harvest, on average, 178.74 mJ and is enough to perform at least 5 DASH7 transmissions and 100 sensing tasks per day.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. A novel thermoelectric energy harvester for wireless sensor network application;Verma;IEEE Trans. Ind. Electron.,2018

2. Thermoelectric energy harvesting for the gas turbine sensing and monitoring system

3. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes

4. A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft

5. Thermal energy harvesting between the air/water interface for powering wireless sensor nodes;Davidson,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3