Novel Fenton-like Catalyst HKUST-1(Cu)/MoS2-3-C with Non-Equilibrium-State Surface for Selective Degradation of Phenolic Contaminants: Synergistic Effects of σ-Cu-Ligand and ≡Mo–OOSO3− Complex

Author:

Yin Xiaoze12,Yin Huaqin12,Wang Renjie12,Wang Jinnan12,Li Aimin12

Affiliation:

1. State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China

2. School of the Environment, Nanjing University, Nanjing 210023, China

Abstract

Novel Fenton-like catalyst HKUST-1(Cu)/MoS2-3-C with a non-equilibrium-state surface was constructed for selective degradation of phenolic contaminants. Electron-polarized distribution facilitated the formation of σ-Cu-ligand between electron-poor Cu centre and phenolic compounds, which not only enhanced radicals generation but also accelerated the Cu(I)/Cu(II) redox. Meanwhile, ≡Mo–OOSO3− complexes formed by the electron-rich Mo centre and peroxymonosulfate (PMS), could directly oxidize phenolic contaminants with the generation of SO4•−. The radical quenching experiments and EPR tests indicated that both SO4•− and •OH played a dominant role in the reaction. Additionally, O2 could be reduced to O2•− by OVs and subsequently converted into 1O2 over the Mo centre. DFT calculation, FT-IR, and in situ Raman spectra analysis results demonstrated that phenolic compounds and PMS were respectively adsorbed by electron-poor Cu centre and electron-rich Mo centre, favouring the electrons transfer from phenolic contaminants to Mo centre for PMS activation. With synergistic effects of σ-Cu-ligand and ≡Mo–OOSO3− complexes, HKUST-1(Cu)/MoS2-3-C achieved a high degradation rate of phenolic contaminants and utilization efficiency of PMS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

social development project of Jiangsu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3