Biosynthesis of Silver Nanoparticles from Cymbopogon citratus Leaf Extract and Evaluation of Their Antimicrobial Properties

Author:

Rakib-Uz-Zaman S MORCID,Hoque Apu EhsanulORCID,Muntasir Mohammed Nimeree,Mowna Sadrina Afrin,Khanom Mst Gitika,Jahan Shah Saif,Akter Nahid,R. Khan M. Azizur,Shuborna Nadia Sultana,Shams Shahriar Mohd,Khan Kashmery

Abstract

Background: Silver nanoparticles (AgNPs) are toxic to microorganisms and can potentially kill multidrug-resistant bacteria. Nanoparticles can be synthesized in many ways, such as physical or chemical methods. Recently, it has been found that plant molecules can perform the same reduction reactions necessary for the production of nanoparticles but in a much more efficient way. Results: Here, green chemistry was employed to synthesize AgNPs using leaf extracts of Cymbopogon citratus. The effects of different parameters such as temperature, pH, and the volume of plant extract were also tested using their absorbance pattern at different wavelengths. The Surface Plasmon Resonance (SPR) changed with the changes in parameters. Changes in temperature from 20 °C to 60 °C have changed the highest absorbance from 0.972 to 3.893 with an SPR of 470 nm. At higher pH (11.1), the particles become highly unstable and have irregular shapes and sizes. The peak shifts to the right at a lower pH level (3.97), indicating a smaller but unstable compound. We have also investigated the effect of the volume of plant extracts on the reaction time. The sample with the highest amount of plant extract showed the most absorbance with a value of 0.963 at λmax, calculated to be 470 nm. The total formation of the AgNPs was observed visually with a color change from yellow to brownish-black. UV-visible spectroscopy was used to monitor the quantitative formation of AgNPs, showing a signature peak in absorbance between 400 and 500 nm. We have estimated the size of the nanoparticles as 47 nm by comparing the experimental data with the theoretical value using Mieplot. The biosynthesized AgNPs showed enhanced antibacterial activity against several multidrug-resistant bacteria, determined based on the minimal inhibitory concentration and zone of inhibition. Conclusion: The findings of this study indicate that an aqueous extract of C. citratus can synthesize AgNPs when silver nitrate is used as a precursor, and AgNPs act as antimicrobial property enhancers, which can be used to treat antibiotic-resistant bacteria. Hence, mass production and green synthesis of AgNPs from C. citratus will be able to increase the overall health of the general population. Moreover, it will enormously reduce the costs for drug development and provide employment options in the remotely located source areas. Finally, our findings will influence further studies in this field to better understand the properties and applications of AgNPs and ultimately contribute to improving planetary health by increasing immunity with high biocompatibility and less drug toxicity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference61 articles.

1. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract ofSpirulina platensis

2. Silver Nanoparticles as Multi-Functional Drug Delivery Systems;Ivanova,2019

3. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

4. Synthesis of Silver Nanoparticles Using Setaria italica (Foxtail Millets) Husk and Its Antimicrobial Activity

5. A Modern Method of Treatment: The Role of Silver Dressings in Promoting Healing and Preventing Pathological Scarring in Patients with Burn Wounds;Munteanu;J. Med. Life,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3