Study on Transient Queue-Size Distribution in the Finite-Buffer Model with Batch Arrivals and Multiple Vacation Policy

Author:

Kempa Wojciech M.ORCID,Marjasz RafałORCID

Abstract

The transient behavior of the finite-buffer queueing model with batch arrivals and generally distributed repeated vacations is analyzed. Such a system has potential applications in modeling the functioning of production systems, computer and telecommunication networks with energy saving mechanism based on cyclic monitoring the queue state (Internet of Things, wireless sensors networks, etc.). Identifying renewal moments in the evolution of the system and applying continuous total probability law, a system of Volterra-type integral equations for the time-dependent queue-size distribution, conditioned by the initial buffer state, is derived. A compact-form solution for the corresponding system written for Laplace transforms is obtained using an algebraic approach based on Korolyuk’s potential method. An illustrative numerical example presenting the impact of the service rate, arrival rate, initial buffer state and single vacation duration on the queue-size distribution is attached as well.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3