Modified ADRC Design of Permanent Magnet Synchronous Motor Based on Improved Memetic Algorithm

Author:

Liu Gang123ORCID,Xu Chuanfang4ORCID,Wang Longda4ORCID

Affiliation:

1. College of Engineering, Inner Mongolia Minzu University, Tongliao 028000, China

2. School of Mechanical and Electrical Engineering, Jiangxi New Energy Technology Institute, Xinyu 338004, China

3. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

4. School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian 116026, China

Abstract

In this paper, a novel modified auto disturbance rejection control (ADRC) design of a permanent magnet synchronous motor based on the improved memetic algorithm (IMA) is proposed. Firstly, there is an obvious system ripple caused by the defect that the optimal control function used in traditional ADRC cannot be differentiable and smooth at the segment point; aiming at weakening the system ripple effectively, the proposed method constructs a novel differentiable and smooth optimal control function to modify the ADRC design. Furthermore, aiming at improving the integration parameters optimization effect effectively, a novel improved memetic algorithm is proposed for obtaining the optimal parameters of ADRC. Specifically, an IMA with high-quality balance based on an adaptive nonlinear decreasing strategy for the convergence factor, Gaussian mutation mechanism, improved learning mechanism with the high-quality balance between competitive and opposition-based learning (OBL) and an elite set maintenance mechanism based on fusion distance is proposed so that these strategies can improve the optimization precision by a large margin. Finally, the experiment results of the PMSM speed control practical cases show that the ADRC based on IMA has an apparent better optimization effect than that of fuzzy PI, traditional ADRC based on the genetic algorithm and an improved ADRC based on improved moth–flame optimization.

Funder

Natural Science Fund Guidance Plan of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3