Analysis of Temperature and Thermal Stress for a Solar Power Tower Molten Salt Receiver under Multi-Source Uncertainties

Author:

Luo Yan,Li Gen,Wang Zhiyuan,Lu Tao

Abstract

Although uncertainties such as solar radiation and material properties are generally involved in the solar receiver design process, current studies in the solar receiver field are based on deterministic models and do not incorporate these uncertainties into the design process. In this paper, based on a coupled deterministic thermal–structural model and an uncertainty analysis model, an analysis of temperature and thermal stress was conducted for a solar power tower (SPT) molten salt receiver under multi-source uncertainties to investigate the dispersions of responses. The results demonstrated that the maximum temperature inside the tube wall under multi-source uncertainties ranged from 847 K to 895 K, with an expectation of 871 K and a standard deviation of 8 K, and the maximum thermal stress ranged from 173 MPa to 245 MPa, with an expectation of 204 MPa and a standard deviation of 12 MPa, both of which had severer probabilities than the deterministic results (871 K and 204 MPa) and may cause failure in the receiver. Furthermore, the results of the global sensitivity analysis indicated that the peak incident solar flux was the most sensitive, and the specific heat of the tube material was the least sensitive to the maximum temperature and thermal stress of the tube wall. These results are beneficial to provide additional reliability and confidence in the temperature and thermal stress evaluation process of solar receiver tubes.

Funder

National Natural Science Foundation of China

State Key Laboratory of Clean Energy Utilization

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3