Affiliation:
1. Beijing Future Technology Innovation Centre for Electrochemical Energy Storage System Integration, North China University of Technology, Beijing 100144, China
2. School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102699, China
Abstract
Direct current transformer (DCT) is a key piece of equipment in direct current (DC) microgrids, and the mainstream topologies mainly include LLC resonant converter (LLC) and dual active bridge (DAB). In this paper, a novel bi-directional buck/boost + CLLLC cascade topology is proposed for the input-series-output-parallel cascade converter system of a DC microgrid. To solve the problem that frequency variation causes the converter to deviate from the optimal operating point, resulting in low efficiency, and the inability to achieve a soft switching function. The CLLLC converter operates near the resonant frequency point as a DCT, only providing electrical isolation and voltage matching, while the buck/boost converter controls the output voltage and the voltage and current sharing of each module. Compared to other cascaded converter systems, the cascaded converter proposed in this paper has high efficiency, simplifies the parameter design, and is suitable for wide input and wide output operating conditions. The system adopts a three-loop control strategy, establishes the small-signal modeling of the system, and its stability is verified by theoretical analysis and simulation. The simulation and experimental results verify the correctness of the proposed cascaded converter based on buck/boost + CLLLC and the effectiveness of the control strategy.
Funder
Beijing Natural Science Foundation
National Natural Science Foundation of China
national key research and development plan
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献