Path Loss and Auxiliary Communication Analysis of VANET in Tunnel Environments

Author:

Li Chunxiao1ORCID,Jin Honghui1,Wu Wen1,Yang Mei1,Wang Qingyue1,Pei Yuanpeng1

Affiliation:

1. School of Information Engineering, Yangzhou University, Yangzhou 225000, China

Abstract

Vehicular ad hoc network (VANET) communications face severe fading problems due to the signal reflections and diffractions within tunnels. Unlike the open road, the space of a tunnel is very limited, so VANET communication performance in a tunnel is seriously affected. In the process of signal transmission, the reflected signal is symmetrical with the incident signal after it is reflected by the road and the wall. In this paper, we establish a mathematical model of path loss for V2V (Vehicle-to-Vehicle) communication based on the principle of signal reflection symmetry in tunnels and considering several factors, such as the tunnel surface and the color of the tunnel wall. In addition, we use cooperative communication to form a virtual multiple-input multiple-output (V-MIMO) system, to improve the communication quality in tunnels. In the proposed system, the OBU (On-Board-unit) and RSU (Road-Side-Unit) share each other’s antennas, so that wireless cooperative communication can be employed, without increasing the number of antennas in a one-way tunnel. Therefore, this multipath fading internal electromagnetic wave propagation model can be used to improve performance. A deep reinforcement learning algorithm was used to solve the pairing problem to obtain a more accurate OBU and RSU pair, to form a V-MIMO system. Here, the RSU is regarded as an agent and interacts with the OBU in the tunnel. The optimal strategy was learned in a real-time changing simulation environment, and the experiment verified the convergence of the algorithm. The simulation results showed that, compared with the Q-learning based scheme, the optimal matching algorithm based on V-MIMO and a DQN (Deep Q-network) could effectively reduce the probability of transmission outages and improve the communication efficiency in tunnels.

Funder

Jiangsu University Student Innovation Training Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3