SDViT: Stacking of Distilled Vision Transformers for Hand Gesture Recognition

Author:

Tan Chun Keat1,Lim Kian Ming1ORCID,Lee Chin Poo1ORCID,Chang Roy Kwang Yang1ORCID,Alqahtani Ali23ORCID

Affiliation:

1. Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Malacca 75450, Malaysia

2. Department of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

3. Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia

Abstract

Hand gesture recognition (HGR) is a rapidly evolving field with the potential to revolutionize human–computer interactions by enabling machines to interpret and understand human gestures for intuitive communication and control. However, HGR faces challenges such as the high similarity of hand gestures, real-time performance, and model generalization. To address these challenges, this paper proposes the stacking of distilled vision transformers, referred to as SDViT, for hand gesture recognition. An initially pretrained vision transformer (ViT) featuring a self-attention mechanism is introduced to effectively capture intricate connections among image patches, thereby enhancing its capability to handle the challenge of high similarity between hand gestures. Subsequently, knowledge distillation is proposed to compress the ViT model and improve model generalization. Multiple distilled ViTs are then stacked to achieve higher predictive performance and reduce overfitting. The proposed SDViT model achieves a promising performance on three benchmark datasets for hand gesture recognition: the American Sign Language (ASL) dataset, the ASL with digits dataset, and the National University of Singapore (NUS) hand gesture dataset. The accuracies achieved on these datasets are 100.00%, 99.60%, and 100.00%, respectively.

Funder

Telekom Malaysia Research & Development

King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3