The Effect of Ultrasound and Pulsed Electric Field on the Osmotic Dehydration Process of Strawberries

Author:

Pobiega Katarzyna1ORCID,Matys Aleksandra2ORCID,Trusinska Magdalena2,Rybak Katarzyna2ORCID,Witrowa-Rajchert Dorota2ORCID,Nowacka Malgorzata2ORCID

Affiliation:

1. Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland

2. Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland

Abstract

Currently, the demands of consumers are growing, and they expect safe and natural products of higher quality compared to products processed using thermal methods. Thermal treatment influences the sensory as well as quality and nutritional value of processed plant material. This results in the development of innovative, non-thermal methods of food preservation and processing. Hence, the study was conducted to examine how ultrasound (US) and pulsed electric field (PEF) affect the osmotic dehydration process of strawberries. An US treatment with a power of 400 W and a frequency of 24 kHz for 30 and 90 s and a PEF treatment were used, adopting the appropriate energy consumption of 1 and 2.5 kJ/kg. Then, strawberries after both processes were osmotically dehydrated in 0.5; 1, and 2 h at 30 °C. Dehydration was carried out in a 50% sucrose solution. Research findings have indicated that the pretreatment positively enhanced the efficiency of osmotic dehydration. An improvement in the dry weight gain rate was noted. Strawberries dehydrated with the use of pretreatment had similar or lower color values and the content of bioactive components compared to strawberries subjected to dehydration only. The material treated with the PEF turned out to be the softest. Significant differences in sugar content were noted in fruits after pretreatment. Sucrose levels increased, glucose levels decreased, and fructose remained at a comparable level.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3