Benthic Nutrient Fluxes across Subtidal and Intertidal Habitats in Breton Sound in Response to River-Pulses of a Diversion in Mississippi River Delta

Author:

Twilley Robert R.,Rick Silke,Bond Daniel C.,Baker Justin

Abstract

We measured benthic fluxes of dissolved nutrients in subtidal sediments and intertidal soils associated with river-pulse events from Mississippi River via the operation of a river diversion structure at Caernarvon, LA. Experiments measuring benthic fluxes in subtidal habitats were conducted during the early spring flood pulse (February and March) each year from 2002 to 2004, compared to benthic fluxes of intertidal habitats measured in February and March 2004. Nitrate (NO3−) uptake rates for subtidal sediments and intertidal soils depended on overlying water NO3− concentrations at near-, mid-, and far-field locations during river-pulse experiments when water temperatures were >13 °C (NO3− removal was limited below this temperature threshold). NO3− loading to upper Breton Sound was estimated for nine river-pulse events (January, February, and March in 2002, 2003, and 2004) and compared to NO3− removal estimated by the subtidal and intertidal habitats based on connectivity, area, and flux rates as a function of NO3− concentration and water temperature. Most NO3− removal was accomplished by intertidal habitats compared to subtidal habitats with the total NO3− reduction ranging from 8% to 31%, depending on water temperature and diversion discharge rates. River diversion operations have important ecosystem design considerations to reduce the negative effects of eutrophication in downstream coastal waters.

Funder

Environmental Protection Agency

Louisiana Department of Natural Resources

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3