Author:
Yang Yatao,Pan Longhui,Ma Junxian,Yang Runze,Zhu Yishuang,Yang Yanzhao,Zhang Li
Abstract
The battery industry has been growing fast because of strong demand from electric vehicle and power storage applications.Laser welding is a key process in battery manufacturing. To control the production quality, the industry has a great desire for defect inspection of automated laser welding. Recently, Convolutional Neural Networks (CNNs) have been applied with great success for detection, recognition, and classification. In this paper, using transfer learning theory and pre-training approach in Visual Geometry Group (VGG) model, we proposed the optimized VGG model to improve the efficiency of defect classification. Our model was applied on an industrial computer with images taken from a battery manufacturing production line and achieved a testing accuracy of 99.87%. The main contributions of this study are as follows: (1) Proved that the optimized VGG model, which was trained on a large image database, can be used for the defect classification of laser welding. (2) Demonstrated that the pre-trained VGG model has small model size, lower fault positive rate, shorter training time, and prediction time; so, it is more suitable for quality inspection in an industrial environment. Additionally, we visualized the convolutional layer and max-pooling layer to make it easy to view and optimize the model.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献