A High-Performance Deep Learning Algorithm for the Automated Optical Inspection of Laser Welding

Author:

Yang Yatao,Pan Longhui,Ma Junxian,Yang Runze,Zhu Yishuang,Yang Yanzhao,Zhang Li

Abstract

The battery industry has been growing fast because of strong demand from electric vehicle and power storage applications.Laser welding is a key process in battery manufacturing. To control the production quality, the industry has a great desire for defect inspection of automated laser welding. Recently, Convolutional Neural Networks (CNNs) have been applied with great success for detection, recognition, and classification. In this paper, using transfer learning theory and pre-training approach in Visual Geometry Group (VGG) model, we proposed the optimized VGG model to improve the efficiency of defect classification. Our model was applied on an industrial computer with images taken from a battery manufacturing production line and achieved a testing accuracy of 99.87%. The main contributions of this study are as follows: (1) Proved that the optimized VGG model, which was trained on a large image database, can be used for the defect classification of laser welding. (2) Demonstrated that the pre-trained VGG model has small model size, lower fault positive rate, shorter training time, and prediction time; so, it is more suitable for quality inspection in an industrial environment. Additionally, we visualized the convolutional layer and max-pooling layer to make it easy to view and optimize the model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based in-process monitoring for laser deep penetration welding: A survey;Engineering Applications of Artificial Intelligence;2024-11

2. ACAT-transformer: Adaptive classifier with attention-wise transformation for few-sample surface defect recognition;Advanced Engineering Informatics;2024-08

3. Hybrid multi criteria decision making methodology for improving sustainability of the manufacturing sector;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-06-10

4. Multi-model feature aggregation for classification of laser welding images with vision transformer;Journal of King Saud University - Computer and Information Sciences;2024-06

5. Automated Optical Inspection for Quality Control in PCBA assembly lines: a case study for Point of Sale Devices Production Lines;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3