Abstract
(1) Background: Bone metastasis is one of the most frequent diseases in breast, lung and prostate cancer; bone scintigraphy is the primary imaging method of screening that offers the highest sensitivity (95%) regarding metastases. To address the considerable problem of bone metastasis diagnosis, focused on breast cancer patients, artificial intelligence methods devoted to deep-learning algorithms for medical image analysis are investigated in this research work; (2) Methods: Deep learning is a powerful algorithm for automatic classification and diagnosis of medical images whereas its implementation is achieved by the use of convolutional neural networks (CNNs). The purpose of this study is to build a robust CNN model that will be able to classify images of whole-body scans in patients suffering from breast cancer, depending on whether or not they are infected by metastasis of breast cancer; (3) Results: A robust CNN architecture is selected based on CNN exploration performance for bone metastasis diagnosis using whole-body scan images, achieving a high classification accuracy of 92.50%. The best-performing CNN method is compared with other popular and well-known CNN architectures for medical imaging like ResNet50, VGG16, MobileNet, and DenseNet, reported in the literature, providing superior classification accuracy; and (4) Conclusions: Prediction results show the efficacy of the proposed deep learning approach in bone metastasis diagnosis for breast cancer patients in nuclear medicine.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献