Abstract
This paper investigates the adaptive fault-tolerant formation control scheme for heterogeneous multi-agent systems consisting of unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) with actuator faults, parameter uncertainties and external disturbances under directed communication topology. Firstly, the dynamic models of UAVs and USVs are introduced, and a unified heterogeneous multi-agent system model with actuator faults is established. Then, a distributed fault-tolerant formation controller is proposed for the unified model of UAVs and USVs in the XY plane by using adaptive updating laws and radial basis function neural network. After that, a decentralized formation-tracking controller is designed for the altitude control system of UAVs. Based on the Lyapunov stability theory, it can be proved that the formation errors and tracking errors are uniformly ultimately bounded which means that the expected time-varying formation is achieved. Finally, a simulation study is given to demonstrate the effectiveness of the proposed scheme.
Funder
National Natural Science Foundation of China
111 Project
Fundamental Research Funds for Central Universities
China Scholarship Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献