Application of Vacuum Techniques in Shell Moulds Produced by Additive Manufacturing

Author:

Rodríguez-González P.ORCID,Robles Valero P. E.ORCID,Fernández-Abia A. I.ORCID,Castro-Sastre M. A.,Barreiro García J.ORCID

Abstract

This research shows the feasibility of the additive manufacturing technique (AM), Binder Jetting (BJ), for the production of shell moulds, which are filled by vacuum suction in the field of aluminium parts production. In addition, this study compares the gravity pouring technique and highlights the advantages of using vacuum techniques in AM moulds. A numerical simulation was carried out to study the behaviour of the liquid metal inside the moulds and the cooling rate of parts was analysed. The results show that in the gravity-pouring mould, the velocity in the gate causes moderate turbulence with small waves. However, vacuum suction keeps the velocity constant by eliminating waves and the filling process is homogeneous. Regarding dimensional accuracy, the staircase effect on the surface of the 3D moulds was the most critical aspect. The vacuum provides very homogeneous values of roughness across the entire surface of the part. Similarly, 3D scanning of castings revealed more accurate dimensions thanks to the help of vacuum forces. Finally, the microstructure of the cross section of the moulded parts shows that the porosity decreases with the vacuum filled. In both cases, the origin of the pores corresponds to gas entrapment and shrinkage during the filling process, the binder vaporization and nucleation points creation, leading to pores by shrinkage, gas entrapment or a mixture of both. This is the first study that uses vacuum filling techniques in moulds created by BJ, demonstrating the feasibility and advantages of AM using vacuum techniques, as an alternative to traditional casting.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference53 articles.

1. 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report;Wohlers,2018

2. Additive Manufacturing General Principles—Terminology,1996

3. Additive Manufacture of Ceramics Components by Inkjet Printing

4. Direct metal rapid casting: mechanical optimization and tolerance calculation

5. Influence of resin infiltrants on mechanical and thermal performance in plaster binder jetting additive manufacturing;Ayres;Addit. Manuf.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3