Low-Cycle Fatigue and Fracture Behavior of Aluminized Stainless Steel AISI 321 for Solar Thermal Power Generation Systems

Author:

Li Wei,Yang Lei,Li Cong,Chen Huitao,Zuo Lu,Li Yide,Chen Jian,He Jianjun,Zhang Sheng-de

Abstract

The microstructure, low-cycle fatigue property, and fracture behavior of as-received and aluminized steel were investigated at room temperature, respectively. The results reveal that the aluminized layer is mainly composed of three layers: (I) the external Al2O3 layer, (II) the transition Fe-Al mesophase layer, and (III) the diffusion layer with AlFe and AlCrFe phase. The microhardness of as-received steel lower than that of aluminized steel until the distance from aluminized layer is greater than 150 μm. Compared to the original steel, the aluminized steel exhibits lower stress amplitude and fatigue life, which is correlated to the surface integrity. According to the Coffin-Manson relationship, the fatigue-ductility coefficients for as-received and aluminized steel is 4.347 and 3.528, respectively. Fractographic analysis reveals that the fatigue cracks tend to nucleate at the coating and propagate through the grain boundaries apace.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3