Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study

Author:

Yu Guishen,Chen Xin,Zhang Biao,Pan Kaixuan,Yang Lifei

Abstract

In this work, the tensile-shear mechanical behaviors of friction stir spot weld and adhesive hybrid joint were performed from both numerical and experimental viewpoints. Weld through (WT) and flow in (FI) processes were studied in this research. The focus was to evaluate joint defects, tensile-shear failure load (TSFL), failure energy, failure mode and stress distribution of the joint. In FI joints, keyhole and hook defects appeared in the weld zone and the areas of material removed from the base metal were filled with adhesive. In the WT joints, the adhesive layer close to the weld zone was carbonized due to the welding heat. Meanwhile, under the rotating movement of welding tool, the adhesive impurities entered the stirring zone (SZ) and heat affected zone (HAZ) of the weld, which decreased mechanical performances of WT joints. Compared to the friction stir spot welding (FSSW) joint, the TSFL value, stiffness and failure energy of FI joint were increased by 2.7, 1.1 and 8.14 times, respectively. In order to study the stress distribution of the joints, a finite element (FE) model, which considered the weld structure and mechanical properties of weld regions, was implemented. Moreover, the adhesive layer was simplified by the cohesive zone model (CZM). FE results show that the FI process effectively decreases the stress concentration of the weld edge from 243.09 to 15.5 MPa, under the 2 kN tensile load. The weld can block the adhesive crack propagation, and the adhesive optimized the stress distribution of FI joints through a synergistic effect. So, the use of FI process for aluminum alloy connection is strongly recommended, especially in crucial structure areas.

Funder

National Science and Technology Infrastructure Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3