Improving the Utility of a Dynorphin Peptide Analogue Using Mannosylated Glycoliposomes

Author:

Lewicky Jordan D.,Fraleigh Nya L.,Martel Alexandrine L.,Nguyen Thi M.-D.,Schiller Peter W.ORCID,Mousavifar LeilaORCID,Roy RenéORCID,Le Anh Dzung,Funk Douglas,Le Hoang-Thanh

Abstract

Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood–brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3–3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30–40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.

Funder

Quebec Ministry of Economy & Innovation

Canadian Institutes of Health Research

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3