Sustainable Lighting-Retrofit Versus Dedicated Luminaires-Light Versus Power Quality

Author:

Ciugudeanu CalinORCID,Buzdugan Mircea,Beu Dorin,Campianu Angel,Galatanu Catalin Daniel

Abstract

For the next few years millions of fluorescent luminaires will become waste and will be replaced by light-emitting diodes—LED luminaires. According to the Cost European Cooperation in Science & Technology Program, the next step will be shifting from sustainability to regeneration (enabling social and ecological systems to maintain a healthy state and to evolve); to reach this point, a is circular economy becomes necessary. The Technical University of Cluj-Napoca’s Lighting Engineering Laboratory—LEL—is the main lighting independent consultant in Transylvania (the north-west region of Romania). For the Building Services Faculty, LEL adopted different energy efficient lighting solutions to replace existing fluorescent T8 luminaires. The best available techniques were evaluated over the last few years. Out of a range of different smart lighting control systems, LED were chosen and used for retrofitting the existing T8 luminaires or simply replacing them with new dedicated LED luminaires. The study analyzed five different lighting setups for upgrading the existing fluorescent T8 2*36W luminaires. One setup used T5 lamps and the others used retrofitted or dedicated LED lighting solutions. First the lighting quantities of each setup were evaluated under real and experimental conditions. Second, a programable power source was used for measuring power quality indicators corelated with the provided lighting outputs, under different voltage values and waveforms. For each lighting setup, an even and odd current harmonic limit check was performed in line with class C—lighting equipment, IEC 61000-3-2 requirements. A new energy efficiency and power quality indicator was proposed—the lighting apparent power density [VA/sq.m/100lx].

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference25 articles.

1. The Circular Economy – A new sustainability paradigm?

2. Towards the Circular Economy: An Economic and Business Rationale for an Accelerated Transitionhttps://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf

3. Directive 2002/96/EC on waste electrical and electronic equipment (WEEE). Official J. EU L37, 2003, 24–38https://eur-lex.europa.eu/resource.html?uri=cellar:ac89e64f-a4a5-4c13-8d96-1fd1d6bcaa49.0004.02/DOC_1&format=PDF

4. Directive 2012/19/EC on waste electrical and electronic equipment (WEEE). Official J. EU L197, 2012, 38–71https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:en:PDF

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3