Effect of Surface Dispersion of Fe Nanoparticles on the Room-Temperature Flash Sintering Behavior of 3YSZ

Author:

Wu Angxuan1,Zhu Yuchen1,Xu Chen2,Yan Nianping3,Zhao Xuetong4ORCID,Wang Xilin15ORCID,Jia Zhidong15

Affiliation:

1. Engineering Laboratory of Power Equipment Reliability in Complicated Coastal Environments, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China

3. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China

4. School of Electrical Engineering, Chongqing University, Chongqing 400044, China

5. State Key Laboratory of Power System Operation and Control, Tsinghua University, Beijing 100084, China

Abstract

Arc floating in surface flashover can be controlled by reducing the interfacial charge-transfer resistance of ceramics. However, thus far, only a few studies have been conducted on methods of treating ceramic surfaces directly to reduce the interfacial charge-transfer resistance. Herein, we explore the flash sintering behavior of a ceramic surface (3 mol% yttria-stabilized zirconia (3YSZ)) onto which loose metal (iron) powder was spread prior to flash sintering at room temperature (25 °C). The iron powder acts as a conductive phase that accelerates the start of flash sintering while also doping the ceramic phase during the sintering process. Notably, the iron powder substantially reduces the transition time from the arc stage to the flash stage from 13.50 to 8.22 s. The surface temperature (~1600 °C) of the ceramic substrate is sufficiently high to melt the iron powder. The molten metal then reacts with the ceramic surface, causing iron ions to substitute Zr4+ ions and promoting rapid densification. The YSZ grains in the metal-infiltrated area grow exceptionally fast. The results demonstrate that spreading metal powder onto a ceramic surface prior to flash sintering can enable the metal to enter the ceramic pores, which will be of significance in developing and enhancing ceramic–metal powder processing techniques.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

State Key Laboratory of Power System Operation and Control

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3