Developing Biliary Atresia-like Model by Treating Human Liver Organoids with Polyinosinic:Polycytidylic Acid (Poly (I:C))

Author:

Chung Patrick Ho-YuORCID,Babu Rosana Ottakandathil,Wu Zhongluan,Wong Kenneth Kak-Yuen,Tam Paul Kwong-Hang,Lui Vincent Chi-Hang

Abstract

Background: We explored the feasibility of creating BA-like organoids by treating human liver organoids with Polyinosinic:Polycytidylic acid (Poly I:C). Methods: Organoids were developed from the liver parenchyma collected during Kasai portoenterostomy (BA) and surgery for other liver disorders (non-BA). The non-BA organoids were co-cultured with poly I:C (40 µg/mL). The organoid morphology from both samples was compared on day 17. RNA-sequencing was performed to examine the transcriptomic differences. Results: Non-BA liver organoids developed into well-expanded spherical organoids with a single-cell layer of epithelial cells and a single vacuole inside. After poly I:C treatment, the majority of these organoids developed into an aberrant morphology with a high index of similarity to BA organoids which are multi-vacuoled and/or unexpanded. RNA-sequencing analysis revealed that 19 inflammatory genes were commonly expressed in both groups. Conditional cluster analysis revealed several genes (SOCS6, SOCS6.1, ARAF, CAMK2G, GNA1C, ITGA2, PRKACA, PTEN) that are involved in immune-mediated signaling pathway had a distinct pattern of expression in the poly I:C treated organoids. This resembled the expression pattern in BA organoids (p < 0.05). Conclusions: Poly I:C treated human liver organoids exhibit morphology and genetic signature highly compatible to organoids developed from BA liver samples. They are potential research materials to study immune-mediated inflammation in BA.

Funder

Health and Medical Research Fund 2020, Food and Health Bureau, Hong Kong SAR

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3