Author:
Guo Guoqiang,Wang Zhimin,Qu Shaobo,Li Hao,Zhou Yang,Lyu Hanjiang,He Yuan
Abstract
A reliable numerical simulation method and large-scale in-situ test method for super-thick coal seams are very important to determine the failure range of mining floors, which is often the basis to protect Ordovician limestone water, an important drinking water source for people in North China. This paper takes Yushupo Coal Mine as an example; the explicit–implicit coupling simulation method and the corresponding double scalar elastic–plastic constitutive model were established to predict the failure depth of the floor numerically, and verified by the full section borehole stress–strain in-situ testing method. The results show that the explicit–implicit coupling numerical program and the double scalar elastoplastic constitutive model are suitable for predicting the floor failure depth under the condition of extra-thick coal seams. In this condition, the overburden moves violently, resulting in a loading–unloading–reloading process with large stress variation amplitude in the mining floor, which leads to serious rock failure compared with that of medium-thick coal seam conditions. In Yushupo 5105 working face, the floor failure starts to develop from 9.3–24.2 m ahead of the coal wall of working face, and the failure depth no longer increases after 35 m behind the coal wall, with the maximum failure depth of 28 m; the envelope line of the floor failure depth presents an inverted saddle distribution. The above research results lay a foundation for further protecting the Ordovician limestone water, and realizing green coal mining.
Funder
Shaanxi Natural Science Basic Research Program Project
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献