SDHAR-HOME: A Sensor Dataset for Human Activity Recognition at Home

Author:

Ramos Raúl GómezORCID,Domingo Jaime DuqueORCID,Zalama EduardoORCID,Gómez-García-Bermejo JaimeORCID,López JoaquínORCID

Abstract

Nowadays, one of the most important objectives in health research is the improvement of the living conditions and well-being of the elderly, especially those who live alone. These people may experience undesired or dangerous situations in their daily life at home due to physical, sensorial or cognitive limitations, such as forgetting their medication or wrong eating habits. This work focuses on the development of a database in a home, through non-intrusive technology, where several users are residing by combining: a set of non-intrusive sensors which captures events that occur in the house, a positioning system through triangulation using beacons and a system for monitoring the user’s state through activity wristbands. Two months of uninterrupted measurements were obtained on the daily habits of 2 people who live with a pet and receive sporadic visits, in which 18 different types of activities were labelled. In order to validate the data, a system for the real-time recognition of the activities carried out by these residents was developed using different current Deep Learning (DL) techniques based on neural networks, such as Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM) or Gated Recurrent Unit networks (GRU). A personalised prediction model was developed for each user, resulting in hit rates ranging from 88.29% to 90.91%. Finally, a data sharing algorithm has been developed to improve the generalisability of the model and to avoid overtraining the neural network.

Funder

Programa Retos Investigación del Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference63 articles.

1. Recent evolution of modern datasets for human activity recognition: a deep survey

2. An Efficient Human Activity Recognition Technique Based on Deep Learning

3. Development and Usability Validation of a Social Robot Platform for Physical and Cognitive Stimulation in Elder Care Facilities

4. Sensor-Based Datasets for Human Activity Recognition – A Systematic Review of Literature

5. Challenges in sensor-based human activity recognition and a comparative analysis of benchmark datasets: A review;Antar;Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR),2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3