Investigating Pervaporation as a Process Method for Concentrating Formic Acid Produced from Carbon Dioxide

Author:

Kaczur Jerry J.ORCID,McGlaughlin Liam J.,Lakkaraju Prasad S.

Abstract

New methods in lowering energy consumption costs for evaporation and concentration are needed in many commercial chemical processes. Pervaporation is an underutilized, low-energy processing method that has a potential capability in achieving lower energy processing costs. A recently developed new electrochemical process that can generate a 5–25 wt% pure formic acid (FA) from the electrochemical reduction of CO2 requires a low-energy process for producing a more concentrated FA product for use in both on-site and commercial plant applications. In order to accomplish this, a 25 cm2 membrane area pervaporation test cell was constructed to evaluate the FA-H2O system separation performance of three distinct types of membrane candidates at various FA feed concentrations and temperatures. The selection included one cation ion exchange, two anion ion exchange, and two microporous hydrophobic membranes. The permeation flux rates of FA and H2O were measured for FA feed concentrations of 10, 20, 40, and 60 wt% at corresponding temperatures of 22, 40, and 60 °C. The separation performance results for these particular membranes appeared to follow the vapor liquid equilibrium (VLE) characteristics of the vapor phase in the FA-H2O system as a function of temperature. A Targray microporous hydrophobic high-density polyethylene (HDPE) membrane and a Chemours Nafion® N324 membrane showed the best permeation selectivities and mass flux rates FA feed concentrations, ranging from 10 to 40 wt%. The cation and anion ion exchange membranes evaluated were found not to show any significant enhancements in blocking or promoting the transport of the formate ion or FA through the membranes. An extended permeation cell run concentrated a 10.12% FA solution to 25.38% FA at 40 °C. Azeotropic distillation simulations for the FA-H2O system using ChemCad 6.0 were used to determine the energy requirement using steam costs in processing FA feed concentrations ranging from 5 to 30 wt%. These experimental results indicate that pervaporation is a potentially useful unit process step with the new electrochemical process in producing higher concentration FA product solutions economically and at lower capital costs. One major application identified is in on-site production of FA for bioreactors employing new types of microbes that can assimilate FA in producing various chemicals and bio-products.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3