Entropy of Quantum Measurements

Author:

Gudder Stanley

Abstract

If a is a quantum effect and ρ is a state, we define the ρ-entropy Sa(ρ) which gives the amount of uncertainty that a measurement of a provides about ρ. The smaller Sa(ρ) is, the more information a measurement of a gives about ρ. In Entropy for Effects, we provide bounds on Sa(ρ) and show that if a+b is an effect, then Sa+b(ρ)≥Sa(ρ)+Sb(ρ). We then prove a result concerning convex mixtures of effects. We also consider sequential products of effects and their ρ-entropies. In Entropy of Observables and Instruments, we employ Sa(ρ) to define the ρ-entropy SA(ρ) for an observable A. We show that SA(ρ) directly provides the ρ-entropy SI(ρ) for an instrument I. We establish bounds for SA(ρ) and prove characterizations for when these bounds are obtained. These give simplified proofs of results given in the literature. We also consider ρ-entropies for measurement models, sequential products of observables and coarse-graining of observables. Various examples that illustrate the theory are provided.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference16 articles.

1. Šafránek, D., and Thingna, J. (2022). Quantifying information extraction using generalized quantum measurements. arXiv.

2. Heinosaari, T., and Ziman, M. (2012). The Mathematical Language of Quantum Theory, Cambridge University Press.

3. Nielson, M., and Chuang, I. (2000). Quantum Computation and Quantum Information, Cambridge University Press.

4. Ohya, M., and Petz, D. (2004). Quantum Entropy and It’s Uses, Springer.

5. A brief introduction to observational entropy;Found. Phys.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3