Preparation and Research on Mechanical Properties of Eco-Friendly Geopolymer Grouting Cementitious Materials Based on Industrial Solid Wastes

Author:

Li Zhonglin123,Xu Ye123,Wu Chengzhi123,Zhang Weiguang123,Chen Yang123,Li Yibing123

Affiliation:

1. Department of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China

3. Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China

Abstract

Red mud (RM), a hazardous solid waste generated in the alumina production process, of which the mineral composition is mainly hematite, is unable to be applied directly in the cement industry due to its high alkalinity. With the rise of geopolymers, RM-based grouting materials play an essential role in disaster prevention and underground engineering. To adequately reduce the land-based stockpiling of solid wastes, ultrafine calcium oxide, red mud, and slag were utilized as the main raw materials to prepare geopolymers, the C-R-S (calcium oxide–red mud–slag) grouting cementitious materials. The direct impact of red mud addition on the setting time, fluidity, water secretion, mechanical properties, and rheological properties of C-R-S were also investigated. In addition, a scanning electron microscope (SEM), X-ray diffraction (XRD), three-dimensional CT (3D-CT), Fourier transform infrared spectroscopy (FT-IR), and other characterization techniques were used to analyze the microstructure and polymerization mechanism. The related results reveal that the increase in red mud addition leads to an enhanced setting time, and the C-R-S-40 grouting cementitious material (40% red mud addition) exhibits the best fluidity of 27.5 cm, the lowest water secretion rate of 5.7%, and a high mechanical strength of 57.7 MPa. The C-R-S polymer grout conforms to the Herschel–Bulkley model, and the fitted value of R2 is above 0.99. All analyses confirm that the preparation process of C-R-S grouting cementitious material not only substantially improves the utilization rate of red mud, but also provides a theoretical basis for the high-volume application of red mud in the field of grouting.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Program Projects

Guangxi Science and Technology Base and Talent Special

Open Foundation of State environmental protection key laboratory of mineral metallurgical resources utilization and pollution control

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3